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1. I l\;TRODCCTIO:--;

The standard formulation of many linear data fitting problems is as

follows: given an m x n matrix A, with m > n, and bERm, find x E R" to

minimize II r II where

r = Ax - b, ( 1.1 )

and the norm is a given norm on R m
, It is usually assumed that the expec

ted values of the components of r are zero, and the appropriate norm to be
used depends on the distribution of the errors represented by these com
ponents, An underlying assumption, therefore, is that errors are only
present in the vector b (corresponding to dependent variable values).
However, it is often the case that the elements of A are also unreliable, for
example, if the independent variable values, too, are inexact. One way to
take account of this more general errors-in-variables situation is to
introduce perturbations into the elements of A and to solve the following
tota/ approximation problem

where

find x E R" to minimize liE: r II

r = (A + E) x - b,

( 1.2)

and the norm is now an appropriate matrix norm, If some of the columns
of A are known to be error free, then an additional constraint is that the
corresponding columns of E are zero. Without loss of generality, it will be
assumed that this is true of the first / columns.

If the matrix norm in (1.2) is the /1' norm defined by taking the usual
/"('ctor / I' norm on the elements of the matrix regarded as an extended vec-
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tor in R'" ,,, + ", then (1.2) becomes the total I I' approximation problem.
An effective way in which this problem may be tackled is to cxploit its con
nection with the following constrained vector norm approximation
problem. Let 7.: R" + I -> R'" be defined by

7.=[A:b].

Then the problem referred to above is

find v E R" + 1 to minimize II Zv III' subject to II v2 "'1 = I, (1.3)

where the subscripts on the norms indicate the usual I I' and 1'1 vector
norms, where p and if are dual in the sense that

( 1.4)

and where the vector v: E R" ,1 i is obtained from v by deleting the first I
components. Both (1.2) and (1.3) are non-convex problems (the feasible
region in (1.3) is the outside of the unit ball), and so it may only be
possible to find points satisfying first-order necessary conditions for local
solutions (stationary points). The precise relationship between (1.2) and
( 1.3) is explored in [6]; a basic result is the following.

THEOREM 1 [6]. Let v E R" 'I he a stalionarl' point or (1.3) with

1'" + 1 i= O. Then x defined hy

( 1.5 )

is a .Itationarl' point or the towill' approxilllation prohlelll (1.2).

The problem (1.3) is in fact meaningful in the errors-in-variables context
when p and if are not connected by the relationship (1.4) (or indeed when
the norms are replaced by arbitrary norms on R'" and R" + 1 I. respec
tively). For example, the so-called orthogonal II' approximation problem
corresponds to the choice if = 2 in ( 1.3) (see [3, 4]). It is shown in [5] that
v solving (1.3) with arbitrary norms II' IlIon R'" and I . II Ii on R" I I i

corresponds through (1.5) to a solution of the total approximation
problem (1.2) with matrix norm defined on the III x (n + 1) matrix M (with
first I columns zero) by

Mil = max II Md 11.1'
Id, Iii I
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where the subscript 2 has (and will continue to have) the same connotation
as before.

This paper is concerned with the solution of (1.3) for the cases I < p,
i{ <x by a class of algorithms essentially proposed by Spath [3] for the
orthogonal /1' problem. Numerical experiments reported by Spath suggest
that these algorithms possess certain global convergence properties, and
this view is reinforced by similar experiments (for the case of the total/I'
approximation problem) reported in [6]. It is the intention here to
establish a theoretical basis for these properties. In the next section, the
class of algorithms is described, and in Section 3 local convergence results
are obtained, which generalize those given in [4, 6]. Finally, in Section 4,
some global convergence results are proved.

The situation when II ZV II" = 0 at a solution (corresponding to II" = 0 in
11.1 )) is of little interest. Therefore it is assumed in what follows that Z has
full rank.

2. THE CI.ASS OF ALGORITHMS

For all values of p, i{ in the range 1< p, q <x, (1.3) may be written as
(find v E R" + 1 to)

mInImIze II Zv II;: subject to !I V2 ;; = 1, (2.1 )

which has differentiable objective and constraint functions. From an
algorithmic point of view, it is important to be able to define the diagonal

matrices

D(v)=diag:I(Zv),11' 2. i= 1,2, ... ,111),

C'(l,)==diag{O,O..... O.lr/+ 1 It
! ~ ....• Il'!I+11(1 ~;.

which will be assumed to exist for all v of interest. When p = I. the solution
to (2.1) is characterized by certain zero components of Zv (see [2]) so
some elements of D(v) will become increasingly large as p tends to 1:
however, provided that p is not too close to I. it is normally possible to
work with D(v) except for pathological cases. The problem (2.1) may then
be written

where

minimize vT./(V) v subject to vTC(v) V= 1

./(v) = ZTD(v) Z.

(2.2)
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The Kuhn Tucker first -order necessary conditions for v* to solve (2.2)
correspond to the existence of a scalar p* such that

fI.I(V*) v* --I/*llctv*) v* = O.

Thus v* is an eigenvector of the generalized eigenvalue problem

.I(v*) v = ','C(v*) v.

(23)

(2.4)

with eigenvalue ;'=v*'J(v*)v*. which is positive by assumption. In par
ticular. if fI = if = 2 (corresponding to the total least-squares problem) v* is
an eigenvector corresponding to the smallest eigenvalue of ZTZ. An
analysis of this problem, and a method of solution based on the singular
value decomposition of Z. is given in [I].

If 11#2. and C(v*) contains some zero clements (which it must do if
1# 0). then (2.4) is deficient in the sense that not all the eigenvalues are
finite. However. if D(v*) exists and is positive definite. then the eigenvalue
problem

C( v* ) v = i.l(v* ) v (2.5 )

has a full set of real non-negative eigenvalues (at least I of which arc zero)
and the eigenvector v* now corresponds to the eigenvalue i. *. say. where

i*=liv*IJ(v*)v*=1 !IZv* ;:.

The natural generalization of the basic method suggested by Spath [3 J
for the case if = 2, 1= 0 has at the i th iteration an approximation Viii to the
solution of (2.1). with II viii I '{ = I, and defines Vii I I I as the eigenvector
(correctly normalized and assumed to be unique) corresponding to the
largesl eigenvalue of the generalized eigenproblcm

(2.6)

This may be obtained by the application of the power method with initial
approximation Vi') Clearly, the correct normalization of Vii I I) is always
possible if .I(V U1 ) is non-singular. If k steps of the power method are
applied. then the inner iteration has the form

where

i = 1, 2..... k. (2.7 )
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In practice, (2.7) is solved for d
lill by forming the QR factors of D l

C(V
IlI

) Z
and using forward and backward substitution with the matrix R. If k steps
of the power method are applied at every value of i, then the outer iteration
process for the algorithm may be written

where

dill = Q(VIlI)' ViII.

VIl + I I = d (II I di'l 11,/, i=O. 1.2.....

(2.X I

Q(v)=J(v) I e(v)

and is assumed to exist for all i. The initial approximation is arbitrary
except that II vjOIIl'1 = I. In his numerical experiments. Spath [3J observed
(when 1=0. q = 2) that this algorithm converged for all values of p in the
range 1< P< 17', where 17' ~ 2.7 (depending on Z). Further, the convergence
was independent of the value of k used (for example. taking k= I was
satisfactory). The rest of this paper is concerned with an analysis of (2.X).
which in particular goes some way towards explaining this phenomenon.

3. LOCAL CO:--lVERGENCE ANALYSIS

Let v* be a fixed point of the iteration (2.8), so that v* is an eigenvector
of the generalized eigenproblem

Q(v*)v=i.v (3.1 )

corresponding to the eigenvalue i* = l/v*T J(v*) v*. and therefore also a
stationary point of (2.1). Let the remaining 1/ eigenvalues of (3.1) be
i. l • i. c..... i'/I with corresponding eigenvectors ZI' ZC ..... Z/I (clearly (3.1) is
non-defective) normalized so that

Let

ZT J(v*)Z/=(),/,

zT J(v*)v*=O.

. " *
)1'1 = 1'1/ 1.•

i. j = I. 2 1/

i=I.2 I/.

i = 1.2,.... 1/.

(3.2)

(3.3 )

(3.4 )
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Then second-order conditions for v* to solve (2.1) may be used to obtain
the following results.

THEOREM 2 [6]. (i) /1 v* solves (2. J ). then

p-l
II",=S;--.

q -- J
i= 1.2..... n. (3.5 )

(ii) /1(3.5) holds with strict inequa/it,vfor each i, i==-l, 2, ... , n, then v*
is a local minimum 01 (2.1 ).

Before proving the main result of this section, a piece of notation and a
preliminary lemma are required. For any WE R" + I, any (n + 1) x (n + I)
matrix T( v) whose elements are continuously differentiable functions of
v E R" + I. V( T(v)) W will denote the (n + I) x (n + 1) matrix which satisfies

T( v + s) W = T( v) W + [V( T( v) ) wJ s + O( II sf)

for any S E R" t I.

LEMMA 1. LeI C(v)=V(Q(v)')v. Then

, ,
C(v*)=(q-2)IU*)/ IQ(V*)' l'I_(p-2)Iu*)/Q(V*)k /

/ 1 / 1

ProoF

C(v) = V(Q(v)') v
,

= I Q(v)' IV(Q(V))Q(v)/ 1 V.
/--1

so that

Also

and so

,
C(v*)= I (i*)/ 1 Q(v*)' /V(Q(v*))v*

j= I

V(C(v) v) = (q -- I) Cry).

(3.6)

(q - I) Cry) = V(l(v) ltv) 1 e(v) v)

= V(l(v) Q(v) v)

=V(l(v))Q(v)v+l(v)V(Q(vlV). (3.7)
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Now if u is a constant vector in R" t
I,

V(J(\')) U = V(J(v) u)

=(p-2)Zl WZ,

where

225

so that

W=diag{(ZuL(Zv),I(Zvl,I/' 4 i = I, 2, ... , m ),

V(J(v*)) Q(v*) v* = (p - 2)i.* J(v*).

Thus, from (3.7),

(q - 1) C(v*) = (p - 2)).* J(v*) + J(v*) (Q(v*) + V(Q(v*)) v*),

and so

V(Q(v*))v*=J(v*) I ((q-l)C(v*)-(p-2)i.*J(v*))-Q(v*)

= (q-2) Q(v*)- (p-2)i.*J.

The result now follows from (3.6). I

THEOREM 3. Sufficient conditions for (2.8) to converge locally to v* are
that

1 + (q - 1) W; < P < 2 + (q - 2) I\'; + (I - II';) (I + I\'7 )!( 1-11'7), i = 1, 2, ..., n.

(3.8)

Proof: Let

II

v=v*+I8;z,
; I

=v*+£, say,

where it is assumed that the numbers 8;, i = 1, 2, ..., 11, are small. Then

Ilv: !I~;= Ilv!+£:o II~;

= Ilvt 11~+q£TC(V*) v* + O(II£f)

II

= 1+q I 8;zTC(v*)V*+O(II£11 2
)

= 1 +O(II£f)

64045 !.!
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using (3.3). Thus v is correctly normalized to first order in 1:. Now define /)
by

:x(v* + /)) = Q(v)'(v* + 1:),

where :x is the normalization constant such that

"
/) = L rPll"

I 1

(3.9)

As before, v* + /) is correctly normalized to first order in /). In addition
II/) II ~ III: II since J(v*) is non-singular. Then Taylor expansion of the right
hand side of (3.9) about v* gives

:x(v* + /)) = Q(V*)k(V* + 1:) + G(v*) I: + O( III: f),

where

G(v) = V(Q(v)') v.

Equating zero-order terms gives

and equating first-order terms gives

i=I,2, ... ,n.

Therefore, using Lemma I,

,
U*)'rP,=;,;O/+(q-2)L (;.*)1 1(;.;)' ItIO/

I~ 1

and so

,
- (p - 2) L U*)I;'; I 0I'

I~ 1

i = I, 2.... , n,

rPjO;= w; + (q-2) \\";(1- w;)/(l- ~j";)

- (p - 2)( 1- w;)/( 1 - Wi), i= 1,2,... , n.

Since local convergence is implied by IrPj8; I < I. i= I, 2, ... , n, the result
follows. I

COROLLARY. Let second-order sufficient conditions (i.e., strict inequality
in (3.5)) hold at v*. Then local convergence is guaranteed when
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(i) p < 2 + (q - 2) If; + (I - 11',)( I + \\,n/( I - )j,n, i = 1,2, ... , n,

(ii) p<3+(q-I)\\';, i= 1,2,... ,n, it'k= I,
(iii) p<3+(q-3))j';, i=I,2, ...,n, it' k-+x, and 1)j',I~I,

i = I, 2,.", n,

(iv) p<2+~, i= I, 2, .." n it'k= I and I/p+ I/q= 1.

These results suggest that there are advantages in an algorithm based on
the simple choice k = I in (2,8). In particular, it is clear that in this case
local convergence is normally guaranteed for all p, I < p < 3, irrespective of
the value of q.

4. GLOBAL CONVERGENCE ANALYSIS

It is convenient to denote the objective function of (2.1 ) by F( v). If J(v) is
defined, then

F(v) = VTJ(V) v.

A key result in the analysis of this section is the following lemma, the proof
of which is straightforward,

LEMMA 2. For any a E R, hER, \\'ilh h #- 0 it' p < 2,

:? 0,

l<p~2

2~ p<x.

COROLLARY 1. LeI 1< P ~ 2, leI v E R" + 1 he such Ihal J(v) is delined,
and leI dE R" + 1 he arhilrary, Then

F(d) ~ F(v) + ~ p(dTJ(v) d - vTJ(V) v).

Prool Set a = (Z d);, h = (Zv); in Lemma 2 and sum over i. I

COROLLARY 2. LeI 2~ q < 00, and leI v E R" + I, dE R" + 1 he arhilrary.

Then

Prool Set a = (d 2 );, h = (v 2Lin Lemma 2 and sum over i. I
A global convergence result is now given for the iteration (2.8) perfor

med with k = I. Notice that there is no restriction on the value of q.
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THEOREM 4. Let 1< p:"; 2, and let the sequence {V(il} he defined hy (2.8)
with k = 1, with V (01 arhitrary except that II viOl II 'I = 1. Then

(i) F(v(i + II) < F( V(il) unless Viii is a stationary point of (2.\ ),

(ii) the limit points of [V(il) at which Q is defined are stationary points
of (2.1 ).

Proal Let v E R" + I. II v] 11" = 1 be such that J( v) is defined (and
therefore positive definite) and let d satisfy

J(v)d=C(v)v. (4.1 )

Further, let ",' be such that II (1 h) d] li" = 1. Then by Corollary 1 of
Lemma 2.

F(~d):"; F(v) +~ p e,l] d'J(v) d - vTJ(V) v). (4.2)

Now. by convexity

'1 "I (I)T
.1-d1Ii ~ Ilv111~+q -d-v C(v)v.
i}, 11" )'

so that

or

using (4.1 ).

Thus

(4.3)

By the Cauchy-Schwartz inequality

so that

from (4.1).

Using (4.3), it then follows from (4.2) that
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with equality only if d and v are parallel, that is, if v is a stationary point of
(2.1). Therefore (i) is proved.

Because Z has full rank, {viii} is a bounded sequence (using part (i)),
and so has limit points. Let the subsequence {vli,l} -. v* as i -. en, with
Q(v*) defined. Further, going to another subsequence if necessary (which is
not renamed)

as i -. CD.

Now F(v lil ) is a decreasing sequence, bounded below, and so is convergent,
to F*, say. By continuity of F, it follows that

F(v*) = F(w*) = F*.

From (2.8), for each i,

J(VIi,l) dliil = C(vliil) vliil,

vCii+ I l = du,l/II d~jilll q'

Letting i -. 00 and using continuity,

J(v*) d* = C(v*) v*,

w*=d*/lldill'l"

(4.4)

(4.5)

If v* is not a stationary point of (2.1 ), then by part (i) F(w*) <: F(v*), a
contradiction of (4.4) which completes the proof. I

The final theorem applies to (2.8) when k> 1. In fact it requires that k be
sufficiently large that a "close enough" approximation is obtained to the
maximum eigenvalue of the generalized eigenproblem (2.6) at each step.
Let v E R" + 1, II v2 11'1 = 1 be such that Q( v) is defined and let J. denote the
largest eigenvalue of the generalized eigenproblem

(4.6)

Let d I satisfy

with II (d i b II Z= r'j. Then it follows that

j= 1,2,... ,

1
-d·-.d
Yj I

as j -. 00, (4.7)
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(4.8)

where a is the eigenvector, suitable normalized, corresponding to I. (or
some linear combination of the eigenvectors if ;. is a multiple eigenvalue).
Now by definition

" dTC(v)d
)=~-~

. dTj(v)d

y'C(v) V
= max' .

VTII yTj(V) y

ylC(vlv
"?----,,--,,---

vTj(V) v

1

with equality holding only if v is an eigenvector of (4.7), in other words a
stationary point of (2.1). Thus if v is not a stationary point, then for k suf
ficiently large (4.7) implies that

dTC(v) d 1

dTj(v)d > vTj(v)v'

where d = dk . The proof of the following theorem requires that, at each
iteration of (2.8), k be large enough that the corresponding inequality

(4.9)

is satisfied at each step. The above argument shows that this IS always
possible away from a stationary point.

THEOREM 5. Let 1< p ~ 2, 2 ~ q < 'XJ, and let the sequence {vii)} be
defined hy (2.8) with viOl arhitrary except that Ii v~olll 'I = 1. Then if (4.9)
holds at each step

(i) F(v l' f II) < F(v li )) unless Viii is a stationary point of (2.\),

(ii) the limit points of {Vii)} at which j is defined are stationary points
of(2.\ ).

Proof: Let v E W+', liVe 'I = 1 be such that ltv) is defined and let d
satisfy

d = Q(V)kV• (4.\0)
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and the inequality (4.8). Let y be such that II (I/y) d2 II q = 1. Then by
Corollary 1 of Lemma 2, (4.2) is satisfied. Also by Corollary 2 of Lemma 2,

so that

1 1
/ ~ dTC(v) d'

(4.11 )

It follows from (4.2), using (4.8) and (4.11), that F( ( I /y ) d) < F( v) unless v
is a stationary point of (2.1), and therefore (i) is proved.

Part (ii) follows as in Theorem 4. I
Unfortunately these theorems do not give a complete analysis of the con

vergence of (2.8). In particular they leave open the question of global con
vergence when k> I in (2.8) but (4.9) is not satisfied at every step. The
situation in this case remains unresolved.
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